

$Continuous\ Assessment\ Test\ I-September\ 2022$

Programme	: B.Tech (CSE, CSE(AIR), CSE(CPS), CSE(AI&ML))	Semester	:	FS 2022-23
Course	DIGITAL SYSTEM DESIGN	Code	:	BECE102L
		Class Nbr	:	CH2022231001875
Faculty	: Dr. HENRIDASS A	Slot	:	E2+TE2
Time	: 90 Minutes	Max. Marks	:	50

Answer Any 5 questions

Q. No.	Sub. Sec.	Questions	Marks
N.	Simplify the expression using Boolean laws AB + (AC)'+AB'C(AB+C)		[5]
	by	Implement the following expression using the CMOS structure and explain the operation of the circuit using any one input combination. $Y = (ABC+DE)'$	[5]
<i>y</i> !	est/	Reduce the following function using K-map technique. $F(A, B, C, D) = \prod M(0, 3, 4, 7, 8, 10, 12, 14) + d(2, 6)$. Implement the function using only NOR gates. Examine the input, output conditions of the gates given in Fig.1 and identify the faulty gates.	[7]
			[3]
X		Design a combinational logic circuit using Verilog HDL in data flow modelling which is used to instruct a Floor cleaning robot to recharge (R=1) itself only when a specific set of following conditions are met. (i). When its battery is low (B = 1) or (ii). When the working time is over (T=1) or (iii). When vacuuming is complete (V=1), and when waxing is complete (W=1).	[10]

f.	Find all the errors (syntax and logical) in the following Verilog declarations. module Exmpl-3(A, B, C, D, F) // Line 1 inputs A, b, C, Output D, F, // Line 2 output B; // Line 3 and (A, B, D); // Line 4 and g1(y,A,B); // Line 5 not g2(D, A, C); // Line 6 OR (F, B; C); // Line 7 endmodule; // Line 8	[10]
4	Design a full-subtractor circuit with three inputs x , y , B_{in} and two outputs $Diff$ and B_{out} . The circuit subtracts $x - y - B_{in}$, where B_{in} is the input borrow, B_{out} is the output borrow, and $Diff$ is the difference.	[10]
1	Implement the function $f(w_1, w_2, w_3) = \sum m(1, 3, 5, 7)$ by using a 3-to-8 binary decoder and an OR gate.	[5]
	Implement a full adder combinational circuit using two half adders.	[5]