

Continuous Assessment Test II - July 2023

Programme	B. Tech. (CSE)	Semester	Fall Inter 2023-24	
Course	Design and Analysis of Algorithms	Code	BCSE 204L	
Faculty	Dr M Janaki Meena, Dr. Joe Dhanith P R. Dr. Pandiyaraju V, Dr. Senthil Kumar A M, Dr. Suguna M, Dr. Dominic Savio M	Slot/Class No.	D2 + TD2 / CH2022232500782, CH2022232500783, CH2022232500784, CH2022232500785, CH2022232500786, CH2022232500781	
Time	90 Minutes	Max. Marks	50	

Instructions

· Answer all the FIVE questions.

· If any assumptions are required, assume the same and mention those assumptions in the answer script.

Use of intelligence is highly appreciated.

· Your answer for all the questions should have both the 'design' component and the 'analysis component'

The 'Design' component should consist: understanding of the problem, logic to develop the pseudocode, illustration, pseudocode.

The 'Analysis' component should consist: Computation of T(n), Time-complexity.

Let m and n be any two even positive integers. A common sequence Z_K of two strings X_m and Y_n is said to be a common end-point-sequence if either ($z_1 = x_1$ or y_1) or ($z_k = x_m$ or y_n). A common end-point sequence Z_K is said to be a common middle-end-point-sequence of X_m and Y_n if $z_{\lfloor \frac{k}{2} \rfloor} = x_{\lfloor \frac{m}{2} \rfloor}$ or $y_{\lfloor \frac{n}{2} \rfloor}$ Here, the notations Z_k , X_m , Y_n , z_1 , x_i , y_i , for any k, m, n, n have the usual meaning. Given two sequences X_m and Y_n , design a dynamic programming pseudocode to compute the longest common middle-end-point-sequence of X_m and Y_n .

Rubrics: Logic: 3 marks, Illustration: 3 marks, Pseudocode: 3 marks, Time-complexity 1 mark

You are given an $n \times n$ grid with n^2 cells, in which the cells in the top row, rightmost column, bottom row and the leftmost column are filled with the digits from $\{0, 1, 2, ..., 9\}$. That is, all the boundary cells have a digit in them. A sample grid of size 4×4 is given here for clarity.

1	7	3	4
9	4	2	0
8	1	6	5
6	2	1	3

Given an $n \times n$ grid with the digits filled in the 4n-4 cells, and ten digits $\{0,1,2,3,...,9\}$, design a pseudocode that uses backtracking strategy, to fill the remaining empty cells with the given 10 digits in such a way that

- · No digit get repeated in any row
- · No digit get repeated in any column

[Rubrics: Logic: 4 marks, Illustration: 2 marks, Pseudocode: 3 marks, Time-complexity 1 mark]

The set of all real numbers that lie between the positive integer a and the positive integer b (a and b inclusive) is denoted by [a,b], read as the 'closed interval a,b'. Here, we call a and b as the end-points of the interval [a,b] and size of the closed interval is b-a. [2,7] is a closed interval of size 5. Two closed intervals $[a_1,b_1]$ and $[a_2,b_2]$ is said to be nested-compatible if $a_1 \le a_2$ and $b_1 \ge b_2$. A set S is said to be a nested compatible set of closed intervals if all the pairs of elements of S are nested-compatible. For example, for $S = \{[1,10],[2,8],[3,5],[12,17],[13,15],[20,21]\}$, the nested compatible subsets of S are $\{[1,10],[2,8],[3,5]\}$ and $\{[12,17,],[13,15]\}$. In fact, $\{[1,10],[2,8],[3,5]\}$ is the maximum-size nested-compatible subset of S. Given n closed intervals $S = \{[a_1,b_1],[a_2,b_2],...[a_n,bn]\}$, design a greedy pseudocode to compute the Maximum-size nested-compatible subset of S. Your pseudocode should compute both the maximum-size of the nested-compatible subset as well the corresponding subset.

Rubrics: Logic: 3 marks, Illustration: 3 marks, Pseudocode: 3 marks, Time-complexity 1 mark

Let m and n be any two positive integers. A pattern P[1,...,m] is said to be a 3-phase-pattern if P occurs Let III. In three phases, with different shift values. For example, P-ABEFGHI is a 3-phase-pattern in T XYZABTTEFBAAGIII with $s_1 = 3, s_2 = 7, s_3 = 12$. Given a pattern P[1,...,m], T[1,...,n], design a pseudocode to decide whether the given pattern is 3-phase-pattern or not. If P is a 3-phase-pattern, your pseudocode should retrun all the three shift values.

[Rubrics: Logic: 3 marks, Illustration: 3 marks, Pseudocode: 3 marks, Time-complexity 1 mark]

5. Consider the following algorithm

string mathing

```
Algorithm 1 F_1(S_1, S_2)
 0: Input : S1, S2
 _{1} /S_{1}, S_{2} are strings of same length and " indicates empty string/
 2: n = S1.length()
 3. d_table [1, ..., n] = "
 4 d table |1| = S_1
 5: d_table 2 4 S2
 6. return F2(n,d_table)
 8 Algorithm : F2(n,d_table)
 9: if d table |n| \neq " then
10: return d table[n]
11. end if o
12. Sx = F_3(F_2(n-2, d\_table), F_2(n-1, d\_table))
13: d_table[n] = Sx
14: return Sx
15:
16: Algorithm : F_3(S_1, S_2)
17: Sx = "
 18: m = S_1.length()
 19: for i = 1 to m do
      if i\%2 \neq 0 then
 20:
         Sx = Sx + S_1[i]
 21:
 22:
       else
         Sx = Sx + S_2[i]
       end if
 25: end for
 26: return Sx
```

Understand the above algorithm and answer the following.

(a) For the input ABCD, DEFG, Compute the output of the algorithm.

2 marks

(b) Describe clearly the functionality of the algorithm.

2 marks

(c) Compute the time-complexity of the algorithm.

2 marks

(d) Describe the design-strategy used in the algorithm.

[2 marks]

(2) The above algorithm is modified by deleting the line:13. Compute the time-complexity of the modified 2 marks algorithm.